You have to be registered and logged in for purchasing articles.
Abstract |
|
Background: About forty-five years ago the advent of Sanger sequencing (Sanger and Coulson 1975) was revolutionary as it allowed deciphering of complete genome sequences. A second revolution came when next-generation sequencing (NGS) technologies accelerated and cheapened genome sequencing. Recently, third generation/longread sequencing methods have appeared, which can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. Nanopore sequencing is one of these third-generation approaches, enabling a single molecule of DNA or RNA to be sequenced in real-time without the need for PCR amplification or chemical labelling of the sample. It works by monitoring changes to an electrical current as nucleic acids are passed through protein or synthetic nanopores.
|