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SUMMARY 

 

Background: Breast cancer remains a major global health issue, requiring innovative approaches for early detec-

tion and treatment. This study employs weighted gene co-expression network analysis (WGCNA) to uncover the 

complex biological processes and pathways involved in tumorigenesis by focusing on gene modules rather than in-

dividual genes. The aim of this study was to integrate multiple datasets and utilize WGCNA to identify the key 

genes involved in breast cancer. By combining various gene expression datasets, we aimed to identify significant 

gene modules and regulatory networks that contribute to breast cancer progression. 

Methods: Four gene expression datasets from the NCBI Gene Expression Omnibus (GEO) were integrated to ex-

plore the genetic profiles of breast cancer. Using high-throughput genomic data, WGCNA identified key regu-

latory networks and hub genes involved in disease progression, and RT-qPCR was performed for validation. 

Results: The study identified 9,707 DEGs, showing significant alterations in gene expression between tumor and 

adjacent normal tissues. Four critical genes, ADIPOQ, CHRDL1, FABP4, and PLIN1, were highlighted, with 

their expression closely linked to lipid metabolism pathways, which are crucial in breast cancer biology. Notably, 

ADIPOQ expression was significantly reduced in tumor samples. 

Conclusions: The integration of Omics data through WGCNA uncovered key interconnected gene modules, em-

phasizing the critical role of lipid metabolism in cancer progression. These results underscore the need for tar-

geted therapeutic strategies to restore hub gene expression and to present potential biomarkers for early diagnosis 
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and treatment. Moreover, lipid metabolism emerged as a pivotal pathway in breast cancer progression, suggesting 

that its regulation could be essential not only for targeted therapies but also for the prevention and control of the 

disease. This approach offers promising avenues for early intervention that could potentially reduce cancer risk. 

(Clin. Lab. 2025;71:xx-xx. DOI: 10.7754/Clin.Lab.2024.240909) 
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INTRODUCTION 

 

Breast cancer, a complex and multifaceted disease, con-

tinues to be a significant global health concern [1]. It is 

the most prevalent cancer among women, impacting 

millions of lives and representing a major cause of mor-

bidity and mortality worldwide [2]. The intricate nature 

of breast cancer necessitates comprehensive exploration 

and innovative approaches for early detection, progno-

sis, and treatment [3]. 

In recent years, the advent of genomics has revolution-

ized our ability to unravel the molecular intricacies of 

breast cancer [4,5]. Genomic data analysis, particularly 

through high-throughput technologies, has become a 

cornerstone in cancer research, offering unprecedented 

insights into the genetic alterations, signaling pathways, 

and potential therapeutic targets underlying breast can-

cer [6,7]. This genomic perspective not only enhances 

our understanding of the disease's heterogeneity but also 

provides a foundation for personalized and targeted 

therapeutic interventions [8]. Therefore, gaining in-

sights into the intricacies of breast cancer is imperative 

for identifying molecular biomarkers crucial for early 

diagnosis [9,10]. Despite advances in treatment and 

early detection, it remains one of the leading causes of 

cancer-related deaths among women globally [11,12]. 

Breast cancer is a highly heterogeneous disease charac-

terized by diverse genetic and molecular profiles [13]. 

Genomic data analysis has emerged as a powerful tool 

in deciphering the genetic landscape of breast cancer. 

By delving into the complexities of gene expression 

patterns, mutational profiles, and regulatory networks, 

researchers can identify key molecular players involved 

in breast cancer initiation, progression, and response to 

treatment [14]. The emergence of high-throughput plat-

forms for gene expression analysis is increasingly 

prominent [15]. Next-generation sequencing and micro-

array analyses have become foundational techniques in 

medical oncology, boasting diverse clinical applications 

such as molecular cancer classification, predicting tu-

mor responses, prognostication, molecular diagnostics, 

the identification of new drug targets, and patient strati-

fication [16]. Gene expression analysis has been instru-

mental in identifying differentially expressed genes 

(DEGs) that contribute to cancer development and pro-

gression. However, individual gene analysis often falls 

short of capturing the dynamic interactions and regu-

latory mechanisms within the cellular environment. To 

overcome these limitations, systems biology approach-

es, such as weighted gene co-expression network analy-

sis )WGCNA), have been developed. One of the ad-

vanced methodologies used to analyze integrated data is 

WGCNA. WGCNA is a systems biology approach used 

to construct co-expression networks based on gene ex-

pression data, identifying modules of highly correlated 

genes. These modules can then be correlated with clini-

cal traits or other phenotypic data to identify key regu-

latory networks and hub genes or the mRNAs that play 

pivotal roles in disease processes [17]. By integrating 

multiple genomic datasets, WGCNA can simultaneous-

ly analyze all available research on breast cancer, pro-

viding a more comprehensive view of its molecular 

mechanisms. This approach enhances the reliability of 

findings by identifying critical pathways and hubs with 

greater accuracy, offering valuable insights into disease 

progression and potential therapeutic strategies. Inte-

grating genomic data offers a holistic view of the altera-

tions driving breast cancer [17,18]. By combining data 

from gene expression profiles and mRNA sequencing 

datasets, researchers can identify differentially express-

ed mRNAs in breast cancer [19]. The integration of da-

ta, including genomics, offers a holistic view of the ge-

nomic alterations that drive breast cancer, paving the 

way for more precise diagnostics and therapeutic strate-

gies.  

WGCNA is particularly valuable in cancer research as it 

helps uncover the underlying biological processes and 

pathways associated with tumorigenesis [20]. By focus-

ing on gene modules rather than individual genes, WG-

CNA provides insights into the coordinated regulation 

of gene expression, revealing complex interactions and 

dependencies that may not be apparent through tradi-
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tional differential expression analysis. This network-

based approach facilitates the identification of central 

regulators within the network, which are often crucial 

for maintaining the malignant phenotype of cancer cells. 

The comprehensive analysis of mRNA interactions 

through integrated datasets not only enhances our un-

derstanding of breast cancer but also holds promise for 

improving patient outcomes through more targeted and 

personalized treatment approaches [21]. 

This study aimed to leverage the wealth of data avail-

able through gene expression profiling to gain a com-

prehensive understanding of the molecular landscape of 

breast cancer. Therefore, we integrated datasets GSE-

45827, GSE65194, and GSE185645 to identify the key 

genes. We also performed WGCNA on the combined 

datasets to uncover crucial pathways involved in breast 

cancer. Furthermore, the identification of gene modules, 

or clusters of co-expressed genes, can provide insights 

into the biological processes and pathways associated 

with breast cancer. This approach will enhance our un-

derstanding of the significant genes related to this dis-

ease. 

 

 

MATERIALS AND METHODS 

 

Data preprocessing 

Raw data from four datasets containing breast cancer 

and control samples was downloaded from the National 

Center for Biotechnology Information (NCBI) Gene Ex-

pression Omnibus (GEO) database (https://www.ncbi. 

nlm.nih.gov/geo). This study integrated four GSEs to 

comprehensively analyze differential gene expressions 

(DEG) and construct WGCNA. The selected datasets 

GSE45827, GSE65194, GSE185645, and GSE42568 

collectively include 442 samples, consisting of 402 dis-

ease samples and 40 normal samples. The samples en-

compass a diverse set of diseases, with GSE45827 com-

prising 130 diseases and 11 normal samples, GSE65194 

comprising 153 diseases and 11 normal samples, GSE1-

85645 comprising 15 diseases and 1 normal sample, and 

GSE42568 comprising 104 diseases and 17 normal 

samples. Three out of the four datasets shared identical 

platforms, and all four datasets were Affymetrix-based, 

thereby minimizing batch effects. All datasets were pro-

cessed using the 'affy' package for reading and normali-

zation, except for GSE185645, which was handled 

using the 'oligo' package. Robust multi-array average 

(RMA) normalization was performed using the 'rma' 

function for all datasets. The integrated expression ma-

trix was then subjected to the ComBat function from the 

'sva' package to mitigate potential batch effects and en-

hance the reliability of downstream analyses. This re-

sulted in a total of 402 diseases and 40 normal samples 

for analysis. Differential expression analysis identified 

genes with significant expression changes between dis-

ease and normal samples. Additionally, WGCNA was 

employed to construct co-expression networks and iden-

tify gene modules associated with specific traits [22]. 

Microarray data and identification of DEGs 

Integrated datasets were merged to create a comprehen-

sive dataset, and the ComBat function was applied. 

Gene filtering was then performed using the genefilter 

package. Out of 16,554 genes, 9,707 genes were select-

ed as DEGs [23]. The resulting DEGs were those with 

adjusted p-value < 0.001, p-value < 0.001, and |logFC| 

> 2. This methodology aims to identify robust DEGs by 

combining gene filtering and differential expression 

analysis techniques. The stringent criteria applied dur-

ing the limma analysis ensured the selection of genes 

with high statistical significance and substantial fold 

changes. The information for the samples analyzed in 

this study is listed in Table 1. 

 

 
Table 1. DEGs analysis of selected datasets. 

 

Dataset Type 

Sample  Total 

Normal 
Breast 

cancer 
442 

GSE45827 mRNA 11 130 141 

GSE65194 mRNA 11 153 164 

GSE185645 mRNA 1 15 16 

GSE42568 mRNA 17 104 121 

 

 

Construction of gene co-expression network and 

identification of significant modules 

To perform WGCNA on the provided datasets, a sys-

tematic methodology was adopted [24]. The WGCNA 

approach was employed to reconstruct the co-expres-

sion network of breast cancer genes. To outline the pro-

cedure, the gene expression matrices underwent a trans-

formation into matrices representing the similarities of 

paired mRNAs. Subsequently, these matrices were con-

verted into adjacency matrices utilizing the Pearson cor-

relation coefficient test. The process involved determin-

ing the smallest feasible β-value by applying the scale-

free topology technique for gene co-expression to en-

sure that the resulting adjacency matrix aligned with the 

required scale-free topology criteria.  

To filter genes for WGCNA, we applied a criterion of 

coefficient of variation (CV) greater than 0.1. Genes ex-

hibiting a CV exceeding 0.1 were considered to have 

the most substantial changes and were selected for fur-

ther WGCNA analysis. Subsequently, a total of 4,122 

genes were subjected to WGCNA analysis based on 

their CV values. Following gene filtration, clustering of 

samples was performed. An outlier, identified as sample 

GSM1045248, was excluded from the analysis. As a re-

sult, 441 samples were retained for subsequent stages of 

the WGCNA analysis. The soft threshold value was set 

to 10, equivalent to 2 raised to the power of 0.9 in R. 

This step was crucial for constructing the adjacency ma-

trix and forming co-expression modules in the subse-

quent stages of the analysis. With the soft threshold es-

tablished, the next steps involved creating the adjacency 
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matrix and forming modules. These modules represent-

ed groups of genes with similar co-expression patterns, 

providing a basis for understanding the underlying regu-

latory networks in the dataset. By employing this com-

prehensive methodology, the WGCNA analysis aimed 

to identify key genes, explore co-expression patterns, 

and unravel the potential biological significance of the 

identified modules in the context of the studied biologi-

cal system, and integrated analysis and functional en-

richment analysis were analyzed by EnrichR. 

 

Patients and demographics 

Breast tissues from 25 patients diagnosed with breast 

cancer, including 25 tumor samples and 25 adjacent 

normal tissues, were obtained from the Seyed Shahada 

Hospital between June 2017 and November 2018. The 

inclusion criteria required confirmation through patho-

logical and genetic assessments, and patients with coex-

isting conditions such as autoimmune diseases, diabe-

tes, cardiovascular conditions, or a history of chemo-

therapy or radiotherapy were excluded from the sampl-

ing cohort. The study strictly adhered to ethical princi-

ples as outlined in the Helsinki Declaration, obtaining 

approval from the ethics committee at branch shah-

rekord University of Medical Sciences (IR.SHK.REC. 

1401.113). Demographic characteristics of breast cancer 

patients are shown in Table 2.  

 

Validation of the expression of selected genes by RT-

qPCR 

Total mRNA from tissue samples was extracted using 

TRIzol (Invitrogen; Thermo Fisher Research, Inc.) fol-

lowing the manufacturer's standard protocol. Following 

quantification and qualification of RNA samples using a 

NanoDrop spectrophotometer (Epoch spectrophotome-

ter-BioTek) and standard agarose gel electrophoresis, 

respectively, RNA was reverse transcribed into cDNA 

using the RevertAid First Strand cDNA Synthesis Kit 

(Thermo Fisher Scientific, USA) according to the man-

ufacturer's instructions. Subsequently, RT-qPCR was 

conducted using RealQ Plus Master Mix Green (Ampli-

con) and the Applied Biosystems 7500 real-time PCR 

system (Thermo Fisher Scientific, Inc., Waltham, MA, 

USA). The primer sequences utilized in RT-qPCR are 

provided in Table S1. In this process, GAPDH served as 

an endogenous control for normalizing expression lev-

els, ensuring standardized relative expression levels for 

subsequent data analysis. The data were then analyzed 

using the 2-ΔΔCT method, with each sample examined 

in triplicate [25,26]. 

 

Statistical analysis 

RT-qPCR results were analyzed using SPSS (version 

16.0; SPSS Inc, Chicago, IL, USA), and GraphPad 

Prism 6.0 (GraphPad Software, San Diego, CA, USA) 

software. The Shapiro-Wilk normality test was used to 

measure the normality of the variables among two 

groups. The statistical significance of the discrepancy 

between normally distributed variables was calculated 

Table 2. Demographic characteristics of breast cancer pa-

tients. 

 

Characteristic 
Number of patients 

(n) 

Percentage 

(%) 

Total patients 25 100 

Age (years) 

< 40 4 16 

40 - 49 7 28 

50 - 59 6 24 

≥ 60 8 32 

Gender   

Female 25 100 

Male 0 0 

Menopausal status 

Pre-menopausal 11 44 

Post-menopausal 14 56 

Family history of BC 

Yes 10 40 

No 15 60 

Tumor stage 

Stage I 6 24 

Stage II 11 44 

Stage III 5 20 

Stage IV 3 12 

Histological type 

Ductal carcinoma 17 68 

Lobular 

carcinoma 
4 16 

Other 4 16 

Receptor status 

ER+ 16 68 

PR+ 14 56 

HER2+ 8 32 

Triple-negative 3 12 

 

 

via unpaired Student's t-test. A p-value of less than 0.05 

was considered statistically significant [27]. 

 

 

RESULTS 

 

DEG identification  

Four expression datasets containing breast cancer and 

control samples were used to investigate the role of 

mRNAs in breast cancer. After merging the data, the 

ComBat command from the sva package was used to re-

duce batch effects (Figure 1). Quantile normalization 

was performed to minimize technical noise in each da-

taset. In the next step, DEG analysis was carried out. 

Genes with an adj-p < 0.001, p-value < 0.001, and 

|logFC| > 2 were filtered and selected, resulting in 2 



Integrating WGCNA for Breast Cancer 

Clin. Lab. 4/2025 5 

Table 3. Characteristics of selected modules. 

 

Module Correlation p-value Genes Real hub genes (wgcna + DEG) 

First -0.86 6e - 128 72 

ADIPOQ, CHRDL1, FABP4, PLIN1 Second -0.44 1e - 22 45 

Third 0.42 9e - 21 95 

 

 

 

 

 

 

 
 

 
 

Figure 1. ComBat results and reduction of the batch effect.  
 

a) Data dispersion before ComBat based on groups, b) the reduction of the batch effect of the data and the reduction of the batch effect of the 

groups, c) data dispersion before ComBat based on GSEs, and d) the reduction of the batch effect of the data and the reduction of the batch 

effect of the GSEs. 

 

 

 

 

overexpressed genes and 7 downregulated genes (Table 

3). A heatmap of gene co-expression was created to 

check correlations (Figure 2a). Volcano plots of DEGs 

results are displayed in Figure 2b, and DEG analysis 

was performed to find the most differentiated expressed 

genes (Figure 3). 

 

Identification of clinically significant modules 

A total of 4,122 genes with a coefficient of variation 

(CV) greater than 0.1 were regarded as having the 

largest changes and were selected for WGCNA analy-

sis. A soft threshold (β) was selected with a cutoff R² 

value of 0.9 (Figure S1b). With this β value, the net-

works closely resemble the real biological network state 

as they adhere to the power law distribution. Following 

that, a hierarchical clustering analysis based on weight-

ed correlation was done, and the clustering results were 

segmented based on the established criteria for obtain-

ing gene modules. The first module had the highest cor-

relation with 72 gene hubs, the second module with 45 

hubs, and the third module with 95 gene hubs. All gene 

co-expression modules were visualized in Figure 4 and 

Table 3. WGCNA cluster dendrogram and module as-

signment. The branches refer to clusters of genes that 

https://www.sciencedirect.com/science/article/pii/S0753332221012634#fig0010
https://www.sciencedirect.com/science/article/pii/S0753332221012634#sec0110
https://www.sciencedirect.com/science/article/pii/S0753332221012634#fig0025
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Figure 2. a) The co-expression heat graph of genes was drawn to check the correlation. b) Volcano plots of DEGs. The vertical 

axis is the mean value of -log 10 (false discovery rate) and the horizontal axis is the value of LogFC. Red dots present the signi-

ficant dysregulated genes that meet the criteria. c) Venn diagram of DEGs and modules real hub-gene selection.  

The overall analysis of this study was performed in two separate manners. In the first one, DEG analysis was performed to 

find the most differentiated expressed genes (List 1). In Parallel, WGCNA was done to find genes with the most values of ‘gene 

significance’ and ‘module membership’, which present the weight of genes in the network. 

 

 

 

 

are highly connected (Figure S1b). We selected mod-

ules with the highest negative correlation for enrich-

ment analysis, and the genes in the first module were 

analyzed using the functional enrichment tool EnrichR 

(Figure 5). 

 

Identification of real hub and Venn diagram 

In the integrated analysis, the Venn diagram revealed 

the shared genes between the modules identified by 

WGCNA and the genes resulting from differential ex-

pression analysis (DEG), emphasizing the interconnect-

ed molecular landscape between WGCNA hub-genes 

and DEG-derived genes. The Venn diagram was created 

using R software. 

 

Analysis of the expression status of selected genes by 

RT-qPCR 

To validate in silico analysis results, RT-qPCR was per-

formed on cDNA from breast cancer and control tissue 

samples. As results are shown in Figure 6, the expres-

sion of ADIPOQ in tumor breast cancer samples had 

significantly decreased relative to the control. Further-

more, elevated expression of CHRDL1 was observed in 

Figure 6a, b. Additionally, we found that FABP4 was 

downregulated in the tumor breast cancer samples (Fig-

ure 6c), and increased expression of PLIN1 was ob-

served in Figure 6d. Additionally the biomarker analy-

sis of ADIPOQ, CHRDL1, FABP4, and PLIN1 indicat-

ed that all genes except PLIN1 exhibit biomarker poten-

tial (Figure 6). 

 

 

DISCUSSION 

 

WGCNA is a critical tool for integrating diverse data-

sets to uncover significant pathways in cancer research. 

Its ability to identify gene modules and hub genes asso-

ciated with cancer phenotypes makes it valuable for dis-

covering therapeutic targets. Genomic data integration 

and WGCNA are essential tools in identifying key 

genes and pathways in breast cancer, providing pro-

found insights into the molecular mechanisms underly-

ing disease progression. These methods allow for com-

prehensive analysis of diverse datasets, facilitating the 

https://www.sciencedirect.com/science/article/pii/S0753332221012634#sec0110
https://www.sciencedirect.com/topics/medicine-and-dentistry/in-silico
https://www.sciencedirect.com/science/article/pii/S0753332221012634#fig0045
https://www.sciencedirect.com/science/article/pii/S0753332221012634#fig0045
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Figure 3. DEG analysis was performed to find the most differentiated expressed genes. 
 

a) Expression of ADIPOQ in normal samples and tumor samples from GEO, p-value < 0/0001 FDlog2 = -1/799 ± 0/4,076. b) Expression of 

CHRDL1 in normal samples and tumor samples from GEO, p-value < 0/0001 FDlog2 = -1/405 ± 0/3,240. c) Expression of FABP4 in normal 

samples and tumor samples from GEO, p-value < 0/0001 FDlog2 = -1/783 ± 0/3,499. d) Expression of PLIN1 in normal samples and tumor 

samples from GEO, p-value < 0/0001 FDlog2 = -1/528 ± 0/2873. e) ROC analysis of ADIPOQ expression showing promising discrimination 

power between tumor and non-tumor tissues in breast area = 0/6,986, p-value < 0/0001. f) ROC analysis of CHRDL1 expression showing pro-

mising discrimination power between tumor and non-tumor tissues in breast area = 0/6,552, p-value < 0/0012. g) ROC analysis of FABP4 ex-

pression showing promising discrimination power between tumor and non-tumor tissues in breast area = 0/6,897, p-value < 0/0001. h) ROC 

analysis of PLIN1 expression showing promising discrimination power between tumor and non-tumor tissues in breast area = 0/6,673, p-value 

< 0/0005. 

(List 2). The similar genes between the two lists were selected as real hub genes. 

 

 

 

 

discovery of gene modules and advancing our under-

standing of biological pathways, which is crucial for de-

veloping personalized therapies. Despite these benefits, 

several challenges are associated with their application. 

WGCNA and genomic integration demand considerable 

computational resources, and the variation across 

studies can limit the consistency of results. Additional-

ly, integrating datasets from different platforms poses 

challenges, as does the interpretation of gene modules 

without clear biological relevance. Other issues include 

dataset selection bias, overfitting, and the risk of false 

positives, which require rigorous validation and a cau-

tious approach in cancer research. 

Regardless of these challenges, the potential for these 

methods to improve cancer research and precision med-

icine remains significant. WGCNA has proven valuable 

in identifying gene co-expression networks across vari-

ous cancer types - including lung, colon, prostate, and 

ovarian cancers - by pinpointing biomarkers, therapeu-

tic targets, and molecular mechanisms associated with 

tumorigenesis and progression. Such applications un-

derscore its role in advancing personalized medicine ap-

proaches [28]. Based on the results, it appears that lipid 

metabolism pathways play a central role in breast can-

cer progression. While previous studies have sporadi-

cally mentioned the involvement of metabolic genes in 

breast cancer, often highlighting their oncogenic poten-

tial, our comprehensive approach, which integrated 

multiple datasets and utilized WGCNA, has identified 

the lipid metabolism pathway as one of the key factors 

in this disease. The expression patterns of genes such as 

ADIPOQ, FABP4, and PLIN1, as well as their biomark-

er capabilities, further underscore the significance of 

lipid metabolism in breast cancer. These findings sug-

gest that targeting lipid metabolic pathways could be 

crucial not only for understanding the disease's pro-
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Figure 4. Module trait relationship and module features of GS and MM.  
 

Every point defines a specific gene within every module that is plotted on the y-axis and the x-axis by GS and MM, respectively. a) first module 

(correlation: -0.86, p-value: 6e-128), b) second module (correlation: -0.44, p-value: 1e-22), c) third module (correlation: 0.42, p-value: 9e-21), 

and d) heat map and gene expression changes of the modules. 

 

 

 

 

gression but also for developing more effective preven-

tive and therapeutic strategies. 

Adiponectin (ADIPOQ), a hormone secreted by adipo-

cytes, plays a crucial role in regulating glucose and fatty 

acid metabolism. Its involvement in cancer has been 

widely studied due to its impact on various signaling 

pathways associated with tumorigenesis [29]. In this 

study, we showed that the expression of adiponectin in 

the tumor tissue was decreased compared to the adja-

cent non-tumor tissue. In previous studies, it was also 

shown that low levels of adiponectin increase the risk of 

breast cancer. Adiponectin exerts anticancer effects by 

activating the AMPK pathway, which maintains cellular 

energy balance, and inhibiting the mTOR pathway, 

which is essential for cell growth. This dual mechanism 

inhibits the proliferation of breast cancer cells by in-

ducing cell cycle arrest and apoptosis. In colorectal can-

cer (CRC), lower adiponectin levels are linked to higher 

disease risk and progression [30]. Adiponectin inhibits 

the NF-κB signaling pathway, which is crucial in in-

flammation and cancer development. Additionally, it 

activates the AMPK pathway in CRC cells, reducing 

proliferation and promoting apoptosis. Studies have 

shown that higher adiponectin levels correlate with a 

lower risk of advanced prostate cancer [31,32]. Adipo-

nectin inhibits prostate cancer cell proliferation by mod-

ulating insulin-like growth factor (IGF) and its down-

stream pathways, including PI3K/Akt and MAPK/ERK, 

critical for cell survival and proliferation [33-35]. Re-

duced expression of ADIPOQ diminishes its regulatory 

effects on crucial signaling pathways involved in cell 

growth and apoptosis. Low adiponectin levels lead to 

decreased activation of the AMPK pathway and less in-

hibition of the mTOR pathway, resulting in unchecked 

cellular proliferation and tumor growth. Furthermore, 

insufficient adiponectin fails to inhibit NF-κB signaling 

effectively, leading to enhanced inflammation and a 

pro-tumorigenic environment. This creates a favorable 

condition for cancer initiation and progression. In sum-

mary, the reduction in ADIPOQ expression disrupts the 

balance of key signaling pathways, promoting an en-

vironment conducive to cancer development and pro-

gression. This underscores the importance of maintain-

ing adequate adiponectin levels as a potential strategy 

for cancer prevention and treatment. CHRDL1 (chor-

din-like 1) is a gene encoding a protein that regulates 
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Figure 5. Enrichment analysis of first module. 
a) The highest score for biological process enrichment results has cellular response to fatty acid, b) the highest score for cellular component en-

richment results has lipid droplet, c) the highest score for keeg pathway enrichment results has regulation of lipolysis in adipocytes, and d) the 

highest score for molecular function enrichment results has alcohol dehydrogenase. 

 

 

 

 

growth factors like bone morphogenetic proteins 

(BMPs), which are crucial for cell growth, differentia-

tion, and apoptosis. Dysregulation of BMP signaling is 

implicated in cancer progression and metastasis. De-

creased expression of CHRDL1, observed in breast can-

cer and other cancers, has contributed to uncontrolled 

cell proliferation and resistance to apoptosis, hallmark 

traits of cancer. CHRDL1 acts as a tumor suppressor by 

negatively regulating BMP signaling. It binds to BMPs, 

preventing their interaction with receptors, thereby inhi-

biting BMP activity. In breast cancer, reduced CHRDL1 

leads to increased BMP activity, promoting tumor 

growth and metastasis by enhancing cell proliferation 

and inhibiting apoptosis. Epigenetic changes, such as 

DNA methylation and histone acetylation, are associ-

ated with decreased CHRDL1 expression in breast can-

cer [36]. These changes can silence the CHRDL1 gene, 

reducing its tumor-suppressive effects. Mechanistically, 

the loss of CHRDL1 results in overactivation of BMP 

signaling pathways, leading to increased cell prolifer-

ation. Additionally, reduced CHRDL1 expression de-

creases apoptosis, allowing cancer cells to survive 

longer and accumulate mutations. The loss of CHRDL1 

also enhances the invasive potential of cancer cells 

through epithelial-mesenchymal transition (EMT), a 

process linked to metastasis. Clinically, the downregu-

lation of CHRDL1 in breast cancer suggests its poten-

tial as a biomarker for early detection and prognosis. 

Restoring CHRDL1 function or targeting BMP signal-

ing could provide new therapeutic strategies. Develop-

ing drugs that mimic CHRDL1 activity or inhibit BMP 

receptors may help control cancer progression and im-

prove patient outcomes. Fatty acid binding protein 4 

(FABP4) is a vital lipid chaperone that plays a vital role 

in the transport of fatty acids and lipophilic substances, 

as well as in lipid metabolism and energy homeostasis. 

Research has linked FABP4 to various cancers, includ-

ing breast, prostate, and ovarian cancer, due to its role 

in metabolic regulation. Studies show that FABP4 is 

overexpressed in breast cancer tissues and is associated 

with tumor aggressiveness and poor prognosis. By mod-

ulating lipid metabolism, this substance promotes the 

proliferation and survival of cancer cells and facilitates 

the supply of energy to rapidly growing tumor cells 

[37]. Higher levels of FABP4 are associated with in-

creased risk and progression of prostate cancer. It sup-

ports the proliferation of cancer cells by increasing lipid 

accumulation and energy metabolism. FABP4 also con-

https://www.sciencedirect.com/topics/medicine-and-dentistry/biological-phenomena-and-functions-concerning-the-entire-organism
https://www.sciencedirect.com/topics/medicine-and-dentistry/biological-phenomena-and-functions-concerning-the-entire-organism
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Figure 6. RT‐qPCR experiments of ADIPOQ, CHRDL1, FABP4, and PLIN1. 
 

a) Expression levels of ADIPOQ in paired tumor and adjacent samples of breast p-value = 0/0001 FDlog2 = -0/8,004, b) expression levels of 

CHRDL1 in paired tumor and adjacent samples of breast p-value < 0/0007 FDlog2 = -2/102 ± 0/5,764, c) expression levels of FABP4 in paired 

tumor and adjacent samples of breast p-value < 0/0001 FDlog2 = -2/445 ± 0/5,002, d) expression levels of PLIN1 in paired tumor and adjacent 

samples of breast p-value < 0/0013 FDlog2 = -1/961, e) ROC analysis of ADIPOQ expression showing promising discrimination power between 

tumor and non-tumor tissues in breast area = 0/9,045, p-value < 0/0001, f) ROC analysis of CHRDL1 expression showing promising discrimi-

nation power between tumor and non-tumor tissues in breast area = 0/7,309, p-value < 0/0012, g) ROC analysis of FABP4 expression showing 

promising discrimination power between tumor and non-tumor tissues in breast area = 0/8,455, p-value < 0/0061, and h) ROC analysis of 

PLIN1 expression showing promising discrimination power between tumor and non-tumor tissues in breast area = 0/6,384, p-value < 0/0933. 

 

 

 

 

tributes to the progression of ovarian cancer by trans-

ferring fatty acids to cancer cells, their growth, and me-

tastasis. FABP4 regulates lipid metabolism essential for 

energy production in cancer cells, supports inflamma-

tion and immune responses through NF-κB signaling, 

promotes angiogenesis, and promotes tumor growth and 

metastasis [38,39]. In some contexts, decreased expres-

sion of FABP4 in breast cancer can disrupt lipid metab-

olism and energy homeostasis and lead to metabolic re-

programming of cancer cells. This can increase the pro-

liferation and survival of malignant cells, which is me-

diated by mechanisms such as DNA methylation and 

histone acetylation, which results in the silencing of the 

FABP4 gene. Perilipin 1 (PLIN1) is a key lipid droplet-

associated protein that regulates lipid storage and me-

tabolism within adipocytes. This gene has been increas-

ingly studied in the context of cancer, given its role in 

managing lipid metabolism, which is often dysregulated 

in cancer cells. Research like ours shows that PLIN1 ex-

pression is downregulated in breast cancer tissues, dis-

rupts lipid metabolism, and supports cancer cell growth. 

This reduction is associated with increased tumor ag-

gressiveness and poor prognosis, as it promotes lipoly-

sis, providing free fatty acids for rapid energy produc-

tion and tumor proliferation. Although studies of PLIN1 

in other cancers are limited, changes in lipid metabo-

lism suggest that altered PLIN1 expression may also af-

fect these cancers. PLIN1 is essential for regulating lip-

id droplet dynamics, and its loss causes the breakdown 

of stored lipids and tumor growth. In addition, PLIN1 

depletion disrupts lipid homeostasis and activates sig-

naling pathways such as PI3K/Akt, which promotes cell 

survival and resistance to apoptosis [40]. This reduction 

in PLIN1 expression can occur through genetic muta-

tions or epigenetic changes, diminishing its tumor-sup-

pressive effects. Understanding the role of PLIN1 high-

lights its potential as a biomarker for early cancer diag-

nosis and treatment. Targeting PLIN1 or lipid metabo-
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lism pathways may provide new strategies to control tu-

mor growth and improve patient outcomes. Overall, 

PLIN1 is very important in cancer biology, especially in 

breast cancer, emphasizing its therapeutic potential. 

The main purpose of this study was to scrutinize the 

prognostic significance, functional role, and expression 

pattern of fatty acid metabolism genes in breast cancer. 

Among the identified genes, ADIPOQ plays a key role 

in lipid metabolism and has been shown to regulate fat-

ty acid oxidation and glucose levels. In breast cancer, 

altered levels of adiponectin have been associated with 

tumor growth and progression, potentially influencing 

how cancer cells use lipids for energy. While primarily 

known for its role in developmental processes, CHRD-

L1 has been linked to lipid metabolism. Changes in its 

expression may affect cell signaling pathways that con-

trol lipid metabolism, contributing to breast cancer pro-

gression by affecting the tumor microenvironment. 

CHRDL1 is crucial for the uptake and transport of fatty 

acids within cells. In breast cancer, increased expression 

of FABP4 may enhance lipid uptake, supporting the 

energy needs of rapidly growing cancer cells and pro-

moting their survival. PLIN1 is involved in lipid droplet 

formation and regulation of lipolysis. Its dysregulation 

in breast cancer could lead to abnormal lipid storage 

and release, potentially promoting cancer cell growth by 

providing an energy source through lipolysis. These 

genes are essential for regulating lipid processes, and 

their dysregulation in breast cancer can drive disease 

progression by influencing lipid metabolism and energy 

use in cancer cells. 

These genes are essential for regulating lipid processes, 

and their altered expression in breast cancer may con-

tribute to disease progression by affecting how cancer 

cells metabolize and utilize lipids. While each of these 

genes has previously been studied individually in breast 

cancer, our approach is unique because it provides a 

comprehensive understanding of their collective roles 

and interactions. This integration of data allows us to 

reveal new insights that would not be revealed from 

studying each gene in isolation. Besides, we used bioin-

formatics data integration to increase the robustness of 

our findings. In addition to examining each of these 

genes in breast cancer, the results of data integration 

and enrichment of identified genes showed that fatty 

acid-related pathways are among the most important 

pathways in which the key genes are involved. Previous 

research has particularly highlighted the role of each of 

these genes as influential factors in lipid metabolism. In 

this study, after enriching the genes associated with 

breast cancer, their significance in the lipid and fatty 

acid pathways was emphasized. This is due to the 

highest score in the biological process enrichment re-

sults being attributed to cellular responses to fatty acids. 

The highest scores in the cellular component enrich-

ment and KEGG pathway analyses were related to lipid 

droplets and the regulation of lipolysis in adipocytes, re-

spectively. Finally, the highest score for molecular 

function enrichment results was associated with alcohol 

dehydrogenase activity.  

In conclusion, our study emphasizes the significant role 

of ADIPOQ, CHRDL1, FABP4, and PLIN1 in breast 

cancer, particularly in regulating lipid metabolism path-

ways. By using WGCNA and integrating GSE datasets, 

we have not only confirmed the individual importance 

of these genes, but also elucidated their collective inter-

actions and contributions to tumor biology. Our find-

ings suggest a potential link between lipid metabolism 

pathways and breast cancer progression, yet further 

studies are needed to fully clarify the precise mecha-

nisms involved. Existing evidence shows that altera-

tions in lipid profiles, such as changes in lipid composi-

tion and BMI, may influence tumor growth and treat-

ment response. However, the specific role of lipid meta-

bolism in cancer progression remains unclear and re-

quires deeper investigation, particularly regarding the 

phenotypic characteristics of these alterations in breast 

cancer patients. Such insights could inform both target-

ed therapies and preventive strategies. 

Our results highlight the importance of maintaining ap-

propriate expression levels of key genes involved in lip-

id metabolism, positioning them as potential biomarkers 

for early detection and therapeutic targeting in breast 

cancer. This integrated approach underscores the value 

of further research to unravel cancer biology's complex-

ities and develop innovative treatments. Additionally, 

identifying lipid metabolism as a critical pathway not 

only offers potential for clinical diagnosis and therapy 

but also opens avenues for preventive measures. By fo-

cusing on lifestyle changes, such as managing lipid in-

take and body fat, there is significant potential to reduce 

the risk of developing breast cancer. This dual strategy, 

addressing both prevention and treatment, holds prom-

ise for improving patient outcomes and promoting long-

term health. 
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